Flavor symmetry for quarks and leptons

Paul H. Frampton

Department of Physics and Astronomy, University of North Carolina,
Chapel Hill, NC 27599-3255, U.S.A.
E-mail: frampton@physics.unc.edu
Thomas W. Kephart
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, U.S.A.
E-mail: tom.kephart@gmail.com

Abstract: Present data on neutrino masses and mixing favor the highly symmetric tribimaximal neutrino mixing matrix which suggests an underlying flavor symmetry. A systematic study of non-abelian finite groups of order $g \leq 31$ reveals that tribimaximal mixing can be derived not only from the well known tetrahedral flavor symmetry $T \equiv A_{4}$, but also by using the binary tetrahedral symmetry $T^{\prime} \equiv S L_{2}\left(F_{3}\right)$ which does not contain the tetrahedral group as a subgroup. T^{\prime} has the further advantage that it can also neatly accommodate the quark masses including a heavy top quark.

Keywords: Global Symmetries, Discrete and Finite Symmetries.

In this letter we propose a flavor symmetry for quarks and leptons.
We shall consider only three left-handed neutrinos at first. The Majorana mass matrix \mathcal{M} is a 3×3 unitary symmetric matrix and without CP violation has six real parameters. Let write the diagonal form as $\mathbf{M}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$, related to the flavor basis \mathcal{M} by $\mathbf{M}=U^{T} \mathcal{M} U$ where U is orthogonal. It is the form of $\mathcal{M}=U \mathbf{M} U^{T}$ and U which are the targets of lepton flavor physics. One technique for analysis of \mathcal{M} is to assume texture zeros [1]-3] in \mathcal{M} and this gives rise to relationships between the mass eigenvalues m_{i} and the mixing angles $\theta_{i j}$. For example, it was shown in $[2]$ that \mathcal{M} cannot have as many as three texture zeros out of a possible six but can have two. A quite different interesting philosophy is that neutrino masses may arise from breaking of lorentz invariance (4). Clearly, a wide range of approaches is being aimed at the problem.

In the present study we focus on a symmetric texture for \mathcal{M} with only four independent parameters, of the form

$$
\mathcal{M}=\left(\begin{array}{lll}
A & B & B \tag{1}\\
B & C & D \\
B & D & C
\end{array}\right)
$$

The \mathcal{M} can be reached from a diagonal \mathbf{M} by the orthogonal transformation

$$
U=\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \tag{2}\\
-\sin \theta_{12} / \sqrt{2} & \cos \theta_{12} / \sqrt{2} & -1 / \sqrt{2} \\
-\sin \theta_{12} / \sqrt{2} & \cos \theta_{12} / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

where one commits to a relationship between θ_{12} and the four parameters in eq. (1) , namely

$$
\begin{equation*}
\tan 2 \theta_{12}=2 \sqrt{2 B(A-C-D)^{-1}} \tag{3}
\end{equation*}
$$

Written in the standard PMNS form (5]

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{4}\\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{i \delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{-1 \delta} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

this ansatz requires that $\theta_{23}=\pi / 4$ and $\theta_{13}=0$, both of which are consistent with present data. These values of maximal θ_{23} and vanishing θ_{13} are presumably only approximate but departures therefrom, if they show up in future experiments, could be accommodated by higher order corrections.

To arrive at tribimaximal mixing [6-11], one more parameter θ_{12} in eq. (22) is assigned such that the entries of the second column are equal, i.e. $\sin \theta_{12}=\cos \theta_{12} / \sqrt{2}$ which implies that $\tan ^{2} \theta_{12}=1 / 2$. Experimentally θ_{12} is non-zero and over 5σ from a maximal $\pi / 4$. The present value [12] is $\tan ^{2} \theta_{12}=0.452_{-0.070}^{+0.088}$, so the tribimaximal value is within the allowed range. With this identification eq. (22) becomes 10

$$
U_{\mathrm{HPS}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \tag{5}\\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & 1 / \sqrt{2}
\end{array}\right)
$$

	1_{1}	1_{2}	1_{3}	3
C_{1}	1	1	1	3
C_{2}	1	1	1	-1
C_{3}	1	ω	ω^{2}	0
C_{4}	1	ω^{2}	ω	0

Table 1: Character table of $T \equiv A_{4} \cdot \omega=\exp (2 \pi i / 3)$.

	1_{1}	1_{2}	1_{3}	3
1_{1}	1_{1}	1_{2}	1_{3}	3
1_{2}	1_{2}	1_{3}	1_{1}	3
1_{3}	1_{3}	1_{1}	1_{2}	3
3	3	3	3	$1_{1}+1_{2}+1_{3}+3+3$

Table 2: Kronecker products for irreducible representations of $T \equiv A_{4}$

This ensures that the three mixing angles $\theta_{i j}$ are consistent with present data, although more accurate experiments may require corrections to U_{HPS}.

The data allow a normal or inverted hierarchy, or a degenerate spectrum. The tribimaximal mixing, $U_{\text {HPS }}$ of eq. (司), can accommodate all three of these neutrino mass patterns and so makes no prediction in that regard.

The success of U_{HPS} tribimaximal neutrino mixing has precipitated many studies of its group theoretic basis [8, [,$~[1]]$ and the tetrahedral group $T \equiv A_{4}$ has emerged. The present analysis was prompted by earlier work of the present authors in systematically studying all non-abelian finite groups of order $g \leq 31$ both for a quark flavor group [14] and for orbifold compactification in string theory (15). Our question is whether or not T is singled out from these as the neutrino flavor symmetry?

The Kronecker products for irreducible representations for all the fourty-five nonabelian finite groups with order $g \leq 31$ are explicitly tabulated in the appendix of (15), where the presentation is adapted to a style aimed at model builders in theoretical physics rather than at mathematicians as in (13].

Study of [15] shows that a promising flavor group is $\equiv S L_{2}\left(F_{3}\right)$. The Kronecker products are identical to those of $T \equiv A_{4}$ if the doublet representations are omitted and so the group $S L_{2}\left(F_{3}\right)$ can reproduce successes of T model building. The use of $S L_{2}\left(F_{3}\right)$ as a flavor group first appeared in (14] and then analysed in more details in [16].
$S L_{2}\left(F_{3}\right)$ has an advantage over T in extension to the quark sector because the doublets of $S L_{2}\left(F_{3}\right)$, absent in T, allow the implementation of a $(2+1)$ structure to the three quark families, thus permitting the third heavy family to be treated differently as espoused in (18, 14, 17]

It is important to remark that $T^{\prime} \equiv S L_{2}\left(F_{3}\right)$ does not contain $T \equiv A_{4}$ as a subgroup (13] so our discussion about quark masses does not merely extend T, but replaces it.

The philosophy used for $S L_{2}\left(F_{3}\right)$ is reminiscent of much earlier work in [17, 18] where

	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
C_{1}	1	1	1	2	2	2	3
C_{2}	1	1	1	-2	-2	-2	3
C_{3}	1	ω^{2}	ω^{4}	-1	ω^{5}	ω	0
C_{4}	1	ω^{4}	ω^{2}	-1	ω	ω^{5}	0
C_{5}	1	1	1	0	0	0	-1
C_{6}	1	ω^{2}	ω^{4}	1	ω^{2}	ω^{4}	0
C_{7}	1	ω^{4}	ω^{2}	1	ω^{4}	ω^{2}	0

Table 3: Character table of $T^{\prime} \equiv S L_{2}\left(F_{3}\right), \omega=\exp (2 \pi i / 6)$.

	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{1}	1_{1}	1_{2}	1_{3}	2_{1}	2_{2}	2_{3}	3
1_{2}	1_{2}	1_{3}	1_{1}	2_{2}	2_{3}	2_{1}	3
1_{3}	1_{3}	1_{1}	1_{2}	2_{3}	2_{1}	2_{2}	3
2_{1}	2_{1}	2_{2}	2_{3}	$1_{1}+3$	$1_{2}+3$	$1_{3}+3$	$2_{1}+2_{2}+2_{3}$
2_{2}	2_{2}	2_{3}	2_{1}	$1_{2}+3$	$1_{3}+3$	$1_{1}+3$	$2_{1}+2_{2}+2_{3}$
2_{3}	2_{3}	2_{1}	2_{2}	$1_{3}+3$	$1_{1}+3$	$1_{2}+3$	$2_{1}+2_{2}+2_{3}$
3	3	3	3	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$2_{1}+2_{2}+2_{3}$	$1_{1}+1_{2}+1_{3}+3+3$

Table 4: Kronecker products for irreducible representations of $T^{\prime} \equiv S L_{2}\left(F_{3}\right)$.
the dicyclic group Q_{6} was used with doublets and singlets for the (1st, 2nd) and (3rd) families to transform as $(\mathbf{2}+\mathbf{1})$ respectively. On the other hand, Q_{6} is not suited for tribimaximal neutrino mixing because like all dicyclic groups $Q_{2 n}$ it has no triplet representation. Recall that when the work on Q_{6} was done, experiments had not established neutrino mixing for the reason explained in our first paragraph.

To discuss the model building using $S L_{2}\left(F_{3}\right)$ we must recall from the A_{4} model building [8, 8, 11] that the leptons can be assigned ${ }^{1}$ to singlets and triplets as follows:

$$
\left.\begin{array}{l}
\binom{\nu_{\tau}}{\tau^{-}}_{L} \tag{6}\\
\binom{\nu_{\mu}}{\mu^{-}}_{L} \\
\binom{\nu_{e}}{e^{-}}_{L}
\end{array}\right\} \begin{array}{rll}
\tau_{R}^{-} & 1_{1} \\
3 & \mu_{R}^{-} & 1_{2} \\
e_{R}^{-} & 1_{3}
\end{array}
$$

The symmetry breaking pattern of most interest is 13

$$
\begin{equation*}
S L_{2}\left(F_{3}\right) \longrightarrow Q \longrightarrow Z_{4} \longrightarrow Z_{2} \longrightarrow \text { no symmetry } \tag{7}
\end{equation*}
$$

[^0]where Q is the quarternionic group so the first discussion concerns the vacuum alignment will cause the symmetry to break according to the pattern (7). Recall that the irreps of $S L_{2}\left(F_{3}\right)$ are $1_{1}, 1_{2}, 1_{3}, 2_{1}, 2_{2}, 2_{3}, 3$.

By study of the character tables of these groups, we can ascertain the VEVS (Vacuum Expectation Values) which generate the required spontaneous symmetry breakdown.

The irreps of Q are $1_{1}, 1_{2}, 1_{3}, 1_{4}, 2$. Concerning the crucial first stage of symmetry breaking $S L_{2}\left(F_{3}\right) \longrightarrow Q$, the irreps are related by

$$
\begin{align*}
& 1_{1} \longrightarrow 1_{1} \\
& 1_{2} \longrightarrow 1_{1} \\
& 1_{3} \longrightarrow 1_{1} \\
& 2_{1} \longrightarrow 2 \\
& 2_{2} \longrightarrow 2 \\
& 2_{3} \longrightarrow 2 \\
& 3 \longrightarrow 1_{2}+1_{3}+1_{4} \tag{8}
\end{align*}
$$

so the breaking requires a VEV in 1_{2} or 1_{3} of $S L_{2}\left(F_{3}\right)$. We therefore assign the left-handed quarks, consistent with the $2+1$ philosophy and the third family treated differently 17, 18] as follows:

$$
\left.\begin{array}{l}
\binom{t}{b}_{L} 1_{1} \tag{9}\\
\binom{c}{s}_{L} \\
\binom{u}{d}_{L}
\end{array}\right\} 2_{1}
$$

and similarly the right-handed quarks are assigned as:

$$
\left.\left.\begin{array}{c}
t_{R} \tag{10}\\
c_{R} \\
u_{R}
\end{array}\right\} \begin{array}{c}
1_{1} \\
b_{R} \\
2_{2} \\
s_{R} \\
d_{R}
\end{array}\right\} 2_{2}
$$

whereupon the mass matrices are:

$$
U=\left(\begin{array}{c|c}
<1_{3}+3> & <2_{1}> \tag{11}\\
\hline<2_{3}> & <1_{1}>
\end{array}\right)
$$

and

$$
D=\left(\begin{array}{c|c}
<1_{2}+3> & <2_{3}> \tag{12}\\
\hline<2_{2}> & <1_{3}>
\end{array}\right)
$$

To implement a hierarchy requires first a VEV to a $\mathrm{SU}(2)_{L_{L}}$-doublet Higgs, $H_{1_{1}}$ which is in the trivial singlet representation of $S L_{2}\left(F_{3}\right)$, thus giving a heavy mass to t without breaking $S L_{2}\left(F_{3}\right)$. This mass is naturally of order the weak scale $\sim v / \sqrt{2} \sim 175 \mathrm{GeV}$.

A VEV to a Higgs $H_{1_{2}}$ breaks $S L_{2}\left(F_{3}\right)$ to Q and can give masses to the b quark and c quarks. More explicitly, starting from the lagrangian for the $S L_{2}\left(F_{3}\right)$ model, we have the Yukawa terms involving the top, bottom, and charm quarks:

$$
\begin{align*}
& Y_{t}\binom{t}{b}_{1_{1}} t_{1_{1}} H_{1_{1}} \tag{13}\\
& Y_{b}\binom{t}{b}_{1_{1}} b_{1_{2}} H_{1_{3}} \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
Y_{c}\left[\binom{c}{s}_{2_{1}} c_{2_{2}}+\binom{u}{d}_{2_{1}} u_{2_{2}}\right] H_{1_{3}}+Y_{c}^{\prime}\left[\binom{c}{s}_{2_{1}} c_{2_{2}}+\binom{u}{d}_{2_{1}} u_{2_{2}}\right] H_{3} \tag{16}
\end{equation*}
$$

where the subscripts on the quark representations and Higgs doublets are the $S l_{2}\left(F_{3}\right)$ irreps where they live.

Hence, as stated above, the VEV for the $H_{1_{1}}$ gives a mass to the top quark, but does not break $S L_{2}\left(F_{3}\right)$. The bottom and, in part, charm quark get their masses from a VEV for the Higgs $H_{1_{3}}$ transforming according to the 1_{3} irrep of $S L_{2}\left(F_{3}\right)$. Thus giving a VEV to $H_{1_{3}}$ gives masses to these next heaviest quarks. This causes the family group to break from $S L_{2}\left(F_{3}\right)$ to the quarternionic group Q. (As we shall show below all quarks can acquire a Q invariant mass). The b / c mass ratio is then simply

$$
\begin{equation*}
\frac{m_{b}}{m_{c}}=\frac{Y_{b}}{Y_{c}} . \tag{17}
\end{equation*}
$$

The Yukawa couplings $Y_{b, c}$ are free parameters and we can therefore get any m_{b} / m_{c} ratio we want. The theory is not predictive at this stage, but it is at least tunable. We can proceed this way to get the other quark mass ratios.

The remaining quark masses are generated from the following Yukawa terms

$$
\begin{equation*}
Y_{s}\left[\binom{c}{s}_{2_{1}} s_{2_{3}}+\binom{u}{d}_{2_{1}} d_{2_{3}}\right] H_{1_{2}}+Y_{s}^{\prime}\left[\binom{c}{s}_{2_{1}} s_{2_{3}}+\binom{u}{d}_{2_{1}} d_{2_{3}}\right] H_{3} \tag{18}
\end{equation*}
$$

where s, d can get a mass from an $H_{1_{2}}$ VEV and keep Q unbroken.
Hence, all the quarks can get masses from $H_{1_{2}}$ and $H_{1_{3}}$ VEVs that leave Q unbroken. Note that VEVs for H_{3} 's also contribute to masses of the first two quark generations, but not to t and b quark masses. More Higgses are needed to fill out all the off diagonal terms in the quark mass matrix. For instance, an $H_{2_{2}}$ is needed to avoid a texture zero for $m_{u t}$ if this is desired.

$$
\begin{equation*}
Y_{u t}\binom{t}{b}_{1_{1}} u_{2_{2}} H_{2_{3}} \tag{19}
\end{equation*}
$$

However, such a contribution is known phenomenologically to be very small.
However, it is important to observe that the only leptonic mass terms are from H_{3} VEVs, but under $S L_{2}\left(F_{3}\right) \rightarrow Q$ we have

$$
\begin{equation*}
3 \rightarrow 1_{2}+1_{3}+1_{4} \tag{20}
\end{equation*}
$$

so a VEV for an H_{3} breaks Q, and giving multiple H_{3} VEVs can break Q to Z_{4}, Z_{2}, or the trivial group of one element.

If we were to ignore $<H_{3}>$ and off diagonal terms the hierarchy of quark masses becomes $m_{b} /\left(m_{c}=m_{u}\right)=Y_{b} / Y_{c}$ and $m_{s}=m_{d}$ and, because these relations are unsatisfactory, $<H_{3}>$ must be significant which is interesting because, as mentioned above, it controls also the lepton masses. Although five quark masses remain encoded in parametric Yukawa couplings, the advantage over the minimal standard model is that the top quark mass is naturally large. As for all flavor groups, including the present one, the proliferation of Yukawa couplings Y_{k} is the principal obstacle to quantitative calculation of the quark masses.

To see that a reasonable lowest-order CKM matrix can be achieved rewrite $m_{i} \equiv Y_{k} v_{i}$ where i is a T^{\prime} representation and Y_{k} the appropriate Yukawa coupling. Then the quark mass matrices in eq. (11) amd eq. (12) must be diagonalized. We work for simplicity in the limit

$$
\begin{equation*}
m_{2_{1}}^{U}=m_{2_{3}}^{U}=m_{2_{2}}^{D}=m_{2_{3}}^{D}=0 \tag{21}
\end{equation*}
$$

which corresponds to taking $V_{u b}=V_{c b}=V_{t d}=V_{t s}=0$ in the CKM matrix. In this case all we need to do is diagonalize the (2×2) sub-matrices,

$$
\begin{align*}
& \tilde{\mathcal{M}}_{U}=\left[\begin{array}{c|c}
i m_{3}^{U} & m_{1_{3}}^{U}+\frac{m_{3}^{U} e^{-i \frac{\pi}{4}}}{\sqrt{2}} \\
\hline-m_{1_{3}}^{U}+\frac{m_{3}^{U} e^{-i \frac{\pi}{4}}}{\sqrt{2}} & m_{3}^{U}
\end{array}\right], \tag{22}\\
& \tilde{\mathcal{M}}_{D}=\left[\begin{array}{c|c}
i m_{3}^{D} & m_{1_{2}}^{D}+\frac{m_{3}^{D} e^{-i \frac{\pi}{4}}}{\sqrt{2}} \\
\hline-m_{1_{2}}^{D}+\frac{m_{3}^{D} e^{-i \frac{\pi}{4}}}{\sqrt{2}} & m_{3}^{D}
\end{array}\right] . \tag{23}
\end{align*}
$$

We begin by diagonalizing $\tilde{\mathcal{M}}_{U}$, which can be achieved by introducing two unitary matrices U_{L}, and U_{R} satisfying

$$
U_{L}^{\dagger} \cdot \tilde{\mathcal{M}}_{U} \cdot U_{R}=\left[\begin{array}{cc}
m_{u} & 0 \tag{24}\\
0 & m_{c}
\end{array}\right]
$$

or equivalently,

$$
U_{L}^{\dagger} \cdot\left(\tilde{\mathcal{M}}_{U} \tilde{\mathcal{M}}_{U}^{\dagger}\right) \cdot U_{L}=\left[\begin{array}{cc}
m_{u}^{2} & 0 \tag{25}\\
0 & m_{c}^{2}
\end{array}\right]
$$

where

$$
\tilde{\mathcal{M}}_{U} \tilde{\mathcal{M}}_{U}^{\dagger}=\left[\begin{array}{c|c}
\frac{3}{2}\left[m_{3}^{U}\right]^{2}+\left[m_{1_{3}}^{U}\right]^{2}+m_{1_{3}}^{U} m_{3}^{U} & \sqrt{2} m_{3}^{U} m_{1_{3}}^{U} e^{-i \frac{\pi}{4}} \tag{26}\\
\hline \sqrt{2} m_{3}^{U} m_{1_{3}}^{U} e^{i \frac{\pi}{4}} & \frac{3}{2}\left[m_{3}^{U}\right]^{2}+\left[m_{1_{3}}^{U}\right]^{2}-m_{1_{3}}^{U} m_{3}^{U}
\end{array}\right]
$$

From eqs. (26) and (25) the eigenvalues are calculated:

$$
\begin{equation*}
m_{u, c}^{2}=\frac{\left(3\left[m_{3}^{U}\right]^{2}+2\left[m_{1_{3}}^{U}\right]^{2}\right) \mp 2 \sqrt{3} m_{3}^{U} m_{1_{3}}^{U}}{2} \tag{27}
\end{equation*}
$$

which indicates how the quark mass spectrum can be successfully accommodated. The unitary matrix U_{L} takes the form:

$$
U_{L}=\frac{1}{\sqrt{1+A^{2}}}\left[\begin{array}{cc}
1 & e^{-i \frac{\pi}{4}} A \tag{28}\\
-e^{i \frac{\pi}{4}} A & 1
\end{array}\right]
$$

with $A=(\sqrt{3}+1) / \sqrt{2}$. We note that U_{L} is independent of quark masses.
In the down-sector, since the mass matrix $\tilde{\mathcal{M}}_{D}$ takes the same form as $\tilde{\mathcal{M}}_{U}$, a matrix $\left(\tilde{\mathcal{M}}_{D} \tilde{\mathcal{M}}_{D}^{\dagger}\right)$ is diagonalized by using the same unitary matrix U_{L} of eq. (28). Hence we reach the result for this special case

$$
V_{\mathrm{CKM}}=\left[\begin{array}{c|c}
U_{L}^{\dagger} D_{L} & 0 \tag{29}\\
\hline 0 & 1
\end{array}\right]=\left[\begin{array}{c}
U_{L}^{\dagger} U_{L} \mid 0 \\
\hline 0
\end{array} 1 .\right.
$$

which is an acceptable first approximation to the CKM matrix.
For the neutrinos, as in earlier work on $T[8]$, the masses are not uniquely predicted but the tribimaximal mixing angles [10] are. All these three neutrino mixing angles are consistent with existing measurements.

The Higgs VEVs with a commonality between quarks and leptons are in the H_{3} of $T^{\prime} \equiv S L_{2}\left(F_{3}\right)$ which has a simple decomposition under the quarternionic subgroup Q which is likely to play a key role in the goal of linking lepton masses with quark masses.

In summary, while $T \equiv A_{4}$ is one candidate for a lepton flavor group which naturally gives rise to tribimaximal mixing, it is not unique among the non abelian finite groups in this regard. The choice $T^{\prime} \equiv S L_{2}\left(F_{3}\right)$, also known as the binary tetrahedral group [20], satisfies the requirement equally well, and because it has doublet representations can thereby begin to accommodate the quark mass spectrum, particularly the anomalously heavy third family. ${ }^{2}$ If our choice is the correct flavor symmetry, it remains to understand why Nature chooses the triplet representations for leptons and the doublet representations for quarks. Quantitative results for masses will require a relationship between the Yukawa parameters from our proposed symmetry.

[^1]
Acknowledgments

TWK thanks the Aspen Center for Physics for hospitality while this research was in progress. This work was supported in part by the U.S. Department of Energy under Grants No. DE-FG02-06ER41418 (PHF) and DE-FG05-85ER40226 (TWK).

References

[1] P.H. Frampton and S.L. Glashow, Can the Zee ansatz for neutrino masses be correct?, Phys. Lett. B 461 (1999) 95 hep-ph/9906375.
[2] P.H. Frampton, S.L. Glashow and D. Marfatia, Zeroes of the neutrino mass matrix, Phys. Lett. B 536 (2002) 79 hep-ph/0201008.
[3] P.H. Frampton, S.L. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 hep-ph/0208157.
[4] A.G. Cohen and S.L. Glashow, Very special relativity, Phys. Rev. Lett. 97 (2006) 021601 hep-ph/0601236; A Lorentz-violating origin of neutrino mass?, hep-ph/0605036.
[5] B. Pontecorvo, Mesoniums and antimesoniums, Sov. Phys. JETP 6 (1957) 429 Zh. Eksp. Teor. Fiz. 33 (1957) 549;
Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870.
[6] N. Cabibbo, Time reversal violation in neutrino oscillation, Phys. Lett. B 72 (1978) 333.
[7] L. Wolfenstein, Oscillations among three neutrino types and CP violation, Phys. Rev. D 18 (1978) 958 .
[8] E. Ma and G. Rajasekaran, Softly broken A(4) symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 hep-ph/0106291;
K.S. Babu, E. Ma and J.W.F. Valle, Underlying A(4) symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 hep-ph/0206292.
[9] E. Ma, Tetrahedral family symmetry and the neutrino mixing matrix, Mod. Phys. Lett. A 20 (2005) 2601 hep-ph/0508099]; Neutrino mass matrix from $S(4)$ symmetry, Phys. Lett. B 632 (2006) 352 hep-ph/0508231;
B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M.K. Parida, A(4) symmetry and prediction of $\mathrm{U}(E 3)$ in a modified Altarelli-Feruglio model, Phys. Lett. B 638 (2006) 345 hep-ph/0603059;
E. Ma, Tribimaximal neutrino mixing from a supersymmetric model with A(4) family symmetry, Phys. Rev. D 73 (2006) 057304;
E. Ma, H. Sawanaka and M. Tanimoto, Quark masses and mixing with A(4) family symmetry, Phys. Lett. B 641 (2006) 301 hep-ph/0606103;
E. Ma, Neutrino mass matrix from $\Delta(27)$ symmetry, Mod. Phys. Lett. A 21 (2006) 1917 hep-ph/0607056; Supersymmetric model of radiative seesaw majorana neutrino masses, hep-ph/0607142; Neutrino mass, dark matter and leptogenesis, Nucl. Phys. 168 (Proc. Suppl.) (2007) 347 hep-ph/0611181.
[10] P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 hep-ph/0202074.
[11] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 hep-ph/0504165; Tri-bimaximal neutrino mixing, A(4) and the modular symmetry, Nucl. Phys. B 741 (2006) 215 hep-ph/0512103;
G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 hep-ph/0610165;
G. Altarelli, Normal and special models of neutrino masses and mixings, hep-ph/0508053; An update on models of neutrino masses and mixings, hep-ph/0610164; Models of neutrino masses and mixings, hep-ph/0611117.
[12] SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of $B-8$ solar neutrinos from the 391-day salt phase SNO data set, Phys. Rev. D 72 (2005) 055502 nucl-ex/0502021.
[13] A.D. Thomas and G.V. Wood, Group tables, Shiva Mathematical Series (1980).
[14] P.H. Frampton and T.W. Kephart, Simple nonabelian finite flavor groups and fermion masses, Int. J. Mod. Phys. A 10 (1995) 4689 hep-ph/9409330.
[15] P.H. Frampton and T.W. Kephart, Classification of conformality models based on nonabelian orbifolds, Phys. Rev. D 64 (2001) 086007 hep-th/0011186.
[16] A. Aranda, C.D. Carone and R.F. Lebed, U(2) flavor physics without $\mathrm{U}(2)$ symmetry, Phys. Lett. B 474 (2000) 170 hep-ph/9910392; Maximal neutrino mixing from a minimal flavor symmetry, Phys. Rev. D 62 (2000) 016009 hep-ph/0002044;
A. Aranda, C.D. Carone and P. Meade, U(2)-like flavor symmetries and approximate bimaximal neutrino mixing, Phys. Rev. D 65 (2002) 013011 hep-ph/0109120.
[17] P.H. Frampton, The third family is different, in Proceeding of the Fourth International Symposium on Particles, Strings and Cosmology, K.C. Wali ed., World Scientific (1995), hep-ph/9409331; Treating top differently from charm and up, in Particle Theory and Phenomenology, K.E. Lassila et al. eds., World Scientific (1996), hep-ph/9507351.
[18] P.H. Frampton and T.W. Kephart, Minimal family unification, Phys. Rev. D 51 (1995) 1 hep-ph/9409324.
[19] E. Ma, Application of finite groups to neutrino mass matrices, AIP Conf. Proc. 917 (2007) 50 hep-ph/0612013.
[20] H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, $4^{\text {th }}$ edition, Springer-Verlag (1980).
[21] P.D. Carr and P.H. Frampton, Group theoretic bases for tri-bimaximal mixing, hep-ph/0701034.
[22] F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal neutrino mixing and quark masses from a discrete flavour symmetry, Nucl. Phys. B 775 (2007) 120 hep-ph/0702194.
[23] M.-C. Chen and K.T. Mahanthappa, CKM ad Tri-bimaximal MNS matrices in a $\mathrm{SU}(5) \times(d) T$ model, Phys. Lett. B 652 (34) 2007 arXiv:0705.0714.

[^0]: ${ }^{1}$ An alternative assignment is in 19 .

[^1]: ${ }^{2}$ Our $S L_{2}\left(F_{3}\right)$ model appears to us as a promising framework worthy of further study with the goal to obtain quantitative results for fermion masses. When we first discussed $S L_{2}\left(F_{3}\right)$ as a family symmetry in 1994 in 14, the state of neutrino physics at that time was insufficient to extend the model to the lepton sector. Subsequent data has now made this a realistic objective. Recent theoretical work 21] was a first step in this direction. A similar model has recently appeared 22] where tribimaximal neutrino mixing is included in an $S L_{2}\left(F_{3}\right) \times Z_{3}$ family symmetry model with somewhat different assignments of quarks to $S L_{2}\left(F_{3}\right)$ irreps, and different vacuum allignment. This model is also supersymmetric, so contains considerably more states and parameters. A grand unified theory based on T^{\prime} is in 23].

