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Abstract: Present data on neutrino masses and mixing favor the highly symmetric tribi-

maximal neutrino mixing matrix which suggests an underlying flavor symmetry. A system-

atic study of non-abelian finite groups of order g ≤ 31 reveals that tribimaximal mixing

can be derived not only from the well known tetrahedral flavor symmetry T ≡ A4, but

also by using the binary tetrahedral symmetry T
′ ≡ SL2(F3) which does not contain the

tetrahedral group as a subgroup. T
′

has the further advantage that it can also neatly

accommodate the quark masses including a heavy top quark.
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In this letter we propose a flavor symmetry for quarks and leptons.

We shall consider only three left-handed neutrinos at first. The Majorana mass matrix

M is a 3× 3 unitary symmetric matrix and without CP violation has six real parameters.

Let write the diagonal form as M = diag(m1,m2,m3), related to the flavor basis M by

M = UTMU where U is orthogonal. It is the form of M = UMUT and U which are

the targets of lepton flavor physics. One technique for analysis of M is to assume texture

zeros [1 – 3] in M and this gives rise to relationships between the mass eigenvalues mi and

the mixing angles θij . For example, it was shown in [2] that M cannot have as many as three

texture zeros out of a possible six but can have two. A quite different interesting philosophy

is that neutrino masses may arise from breaking of lorentz invariance [4]. Clearly, a wide

range of approaches is being aimed at the problem.

In the present study we focus on a symmetric texture for M with only four independent

parameters, of the form

M =







A B B

B C D

B D C






(1)

The M can be reached from a diagonal M by the orthogonal transformation

U =







cosθ12 sinθ12 0

−sinθ12/
√

2 cosθ12/
√

2 −1/
√

2

−sinθ12/
√

2 cosθ12/
√

2 1/
√

2






(2)

where one commits to a relationship between θ12 and the four parameters in eq. (1), namely

tan2θ12 = 2
√

2B(A − C − D)−1 (3)

Written in the standard PMNS form [5]

U =







1 0 0

0 cosθ23 sinθ23

0 −sinθ23 cosθ23













cosθ13 0 sinθ13e
iδ

0 1 0

−sinθ13e
−1δ 0 cosθ13













cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1






(4)

this ansatz requires that θ23 = π/4 and θ13 = 0, both of which are consistent with present

data. These values of maximal θ23 and vanishing θ13 are presumably only approximate but

departures therefrom, if they show up in future experiments, could be accommodated by

higher order corrections.

To arrive at tribimaximal mixing [6 – 11], one more parameter θ12 in eq. (2) is assigned

such that the entries of the second column are equal, i.e. sinθ12 = cosθ12/
√

2 which implies

that tan2θ12 = 1/2. Experimentally θ12 is non-zero and over 5σ from a maximal π/4. The

present value [12] is tan2θ12 = 0.452+0.088
−0.070, so the tribimaximal value is within the allowed

range. With this identification eq. (2) becomes [10]

UHPS =







√

2/3
√

1/3 0

−
√

1/6
√

1/3 −1/
√

2

−
√

1/6
√

1/3 1/
√

2






(5)
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11 12 13 3

C1 1 1 1 3

C2 1 1 1 -1

C3 1 ω ω2 0

C4 1 ω2 ω 0

Table 1: Character table of T ≡ A4. ω = exp(2πi/3).

11 12 13 3

11 11 12 13 3

12 12 13 11 3

13 13 11 12 3

3 3 3 3 11 + 12 + 13 + 3 + 3

Table 2: Kronecker products for irreducible representations of T ≡ A4

This ensures that the three mixing angles θij are consistent with present data, although

more accurate experiments may require corrections to UHPS.

The data allow a normal or inverted hierarchy, or a degenerate spectrum. The tribi-

maximal mixing, UHPS of eq. (5), can accommodate all three of these neutrino mass patterns

and so makes no prediction in that regard.

The success of UHPS tribimaximal neutrino mixing has precipitated many studies of its

group theoretic basis [8, 9, 11] and the tetrahedral group T ≡ A4 has emerged. The present

analysis was prompted by earlier work of the present authors in systematically studying

all non-abelian finite groups of order g ≤ 31 both for a quark flavor group [14] and for

orbifold compactification in string theory [15]. Our question is whether or not T is singled

out from these as the neutrino flavor symmetry?

The Kronecker products for irreducible representations for all the fourty-five non-

abelian finite groups with order g ≤ 31 are explicitly tabulated in the appendix of [15],

where the presentation is adapted to a style aimed at model builders in theoretical physics

rather than at mathematicians as in [13].

Study of [15] shows that a promising flavor group is ≡ SL2(F3). The Kronecker

products are identical to those of T ≡ A4 if the doublet representations are omitted and

so the group SL2(F3) can reproduce successes of T model building. The use of SL2(F3) as

a flavor group first appeared in [14] and then analysed in more details in [16].

SL2(F3) has an advantage over T in extension to the quark sector because the doublets

of SL2(F3), absent in T , allow the implementation of a (2 + 1) structure to the three

quark families, thus permitting the third heavy family to be treated differently as espoused

in [18, 14, 17]

It is important to remark that T
′ ≡ SL2(F3) does not contain T ≡ A4 as a sub-

group [13] so our discussion about quark masses does not merely extend T , but replaces

it.

The philosophy used for SL2(F3) is reminiscent of much earlier work in [17, 18] where

– 2 –
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11 12 13 21 22 23 3

C1 1 1 1 2 2 2 3

C2 1 1 1 −2 −2 −2 3

C3 1 ω2 ω4 −1 ω5 ω 0

C4 1 ω4 ω2 −1 ω ω5 0

C5 1 1 1 0 0 0 −1

C6 1 ω2 ω4 1 ω2 ω4 0

C7 1 ω4 ω2 1 ω4 ω2 0

Table 3: Character table of T
′ ≡ SL2(F3), ω = exp(2πi/6).

11 12 13 21 22 23 3

11 11 12 13 21 22 23 3

12 12 13 11 22 23 21 3

13 13 11 12 23 21 22 3

21 21 22 23 11 + 3 12 + 3 13 + 3 21 + 22 + 23

22 22 23 21 12 + 3 13 + 3 11 + 3 21 + 22 + 23

23 23 21 22 13 + 3 11 + 3 12 + 3 21 + 22 + 23

3 3 3 3 21 + 22 + 23 21 + 22 + 23 21 + 22 + 23 11 + 12 + 13 + 3 + 3

Table 4: Kronecker products for irreducible representations of T
′ ≡ SL2(F3).

the dicyclic group Q6 was used with doublets and singlets for the (1st, 2nd) and (3rd)

families to transform as (2 + 1) respectively. On the other hand, Q6 is not suited for

tribimaximal neutrino mixing because like all dicyclic groups Q2n it has no triplet repre-

sentation. Recall that when the work on Q6 was done, experiments had not established

neutrino mixing for the reason explained in our first paragraph.

To discuss the model building using SL2(F3) we must recall from the A4 model build-

ing [8, 9, 11] that the leptons can be assigned1 to singlets and triplets as follows:

(

ντ

τ−

)

L(

νµ

µ−

)

L(

νe

e−

)

L











































3

τ−
R 11

µ−
R 12

e−R 13

(6)

The symmetry breaking pattern of most interest is [13]

SL2(F3) −→ Q −→ Z4 −→ Z2 −→ no symmetry (7)

1An alternative assignment is in [19].
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where Q is the quarternionic group so the first discussion concerns the vacuum alignment

will cause the symmetry to break according to the pattern (7). Recall that the irreps of

SL2(F3) are 11, 12, 13, 21, 22, 23, 3.

By study of the character tables of these groups, we can ascertain the VEVS (Vacuum

Expectation Values) which generate the required spontaneous symmetry breakdown.

The irreps of Q are 11, 12, 13, 14, 2. Concerning the crucial first stage of symmetry

breaking SL2(F3) −→ Q, the irreps are related by

11 −→ 11

12 −→ 11

13 −→ 11

21 −→ 2

22 −→ 2

23 −→ 2

3 −→ 12 + 13 + 14 (8)

so the breaking requires a VEV in 12 or 13 of SL2(F3). We therefore assign the left-handed

quarks, consistent with the 2 + 1 philosophy and the third family treated differently [17, 18]

as follows:
(

t

b

)

L

11

(

c

s

)

L(

u

d

)

L























21

(9)

and similarly the right-handed quarks are assigned as:

tR 11

cR

uR

}

22

bR 12

sR

dR

}

23

(10)

whereupon the mass matrices are:

U =

(

< 13 + 3 > < 21 >

< 23 > < 11 >

)

(11)

and

D =

(

< 12 + 3 > < 23 >

< 22 > < 13 >

)

(12)
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To implement a hierarchy requires first a VEV to a SU(2)L-doublet Higgs, H11
which

is in the trivial singlet representation of SL2(F3), thus giving a heavy mass to t without

breaking SL2(F3). This mass is naturally of order the weak scale ∼ v/
√

2 ∼ 175 GeV.

A VEV to a Higgs H12
breaks SL2(F3) to Q and can give masses to the b quark and c

quarks. More explicitly, starting from the lagrangian for the SL2(F3) model, we have the

Yukawa terms involving the top, bottom, and charm quarks:

Yt

(

t

b

)

11

t11
H11

(13)

Yb

(

t

b

)

11

b12
H13

(14)

(15)

and

Yc

[(

c

s

)

21

c
22

+

(

u

d

)

21

u
22

]

H13
+ Y ′

c

[(

c

s

)

21

c22
+

(

u

d

)

21

u22

]

H3 (16)

where the subscripts on the quark representations and Higgs doublets are the Sl2(F3) irreps

where they live.

Hence, as stated above, the VEV for the H11
gives a mass to the top quark, but does

not break SL2(F3). The bottom and, in part, charm quark get their masses from a VEV

for the Higgs H13
transforming according to the 13 irrep of SL2(F3). Thus giving a VEV to

H13
gives masses to these next heaviest quarks. This causes the family group to break from

SL2(F3) to the quarternionic group Q. (As we shall show below all quarks can acquire a

Q invariant mass). The b/c mass ratio is then simply

mb

mc
=

Yb

Yc
. (17)

The Yukawa couplings Yb,c are free parameters and we can therefore get any mb/mc

ratio we want. The theory is not predictive at this stage, but it is at least tunable. We can

proceed this way to get the other quark mass ratios.

The remaining quark masses are generated from the following Yukawa terms

Ys

[(

c

s

)

21

s
23

+

(

u

d

)

21

d
23

]

H12
+ Y ′

s

[(

c

s

)

21

s23
+

(

u

d

)

21

d23

]

H3 (18)

where s, d can get a mass from an H12
VEV and keep Q unbroken.

Hence, all the quarks can get masses from H12
and H13

VEVs that leave Q unbroken.

Note that VEVs for H3’s also contribute to masses of the first two quark generations, but

not to t and b quark masses. More Higgses are needed to fill out all the off diagonal terms

in the quark mass matrix. For instance, an H22
is needed to avoid a texture zero for mut

if this is desired.

Yut

(

t

b

)

11

u
22

H
23

(19)
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However, such a contribution is known phenomenologically to be very small.

However, it is important to observe that the only leptonic mass terms are from H3

VEVs, but under SL2(F3) → Q we have

3 → 12 + 13 + 14, (20)

so a VEV for an H3 breaks Q, and giving multiple H3 VEVs can break Q to Z4, Z2, or the

trivial group of one element.

If we were to ignore < H3 > and off diagonal terms the hierarchy of quark masses

becomes mb/(mc = mu) = Yb/Yc and ms = md and, because these relations are unsatis-

factory, < H3 > must be significant which is interesting because, as mentioned above, it

controls also the lepton masses. Although five quark masses remain encoded in parametric

Yukawa couplings, the advantage over the minimal standard model is that the top quark

mass is naturally large. As for all flavor groups, including the present one, the proliferation

of Yukawa couplings Yk is the principal obstacle to quantitative calculation of the quark

masses.

To see that a reasonable lowest-order CKM matrix can be achieved rewrite mi ≡ Ykvi

where i is a T
′

representation and Yk the appropriate Yukawa coupling. Then the quark

mass matrices in eq. (11) amd eq. (12) must be diagonalized. We work for simplicity in

the limit

mU
21

= mU
23

= mD
22

= mD
23

= 0 (21)

which corresponds to taking Vub = Vcb = Vtd = Vts = 0 in the CKM matrix. In this case

all we need to do is diagonalize the (2 × 2) sub-matrices,

M̃U =





imU
3 mU

13
+

mU

3
e−i

π
4√

2

−mU
13

+
mU

3
e
−i

π
4√

2
mU

3



 , (22)

M̃D =





imD
3 mD

12
+

mD

3
e−i

π
4√

2

−mD
12

+
mD

3
e−i

π
4√

2
mD

3



 . (23)

We begin by diagonalizing M̃U , which can be achieved by introducing two unitary matrices

UL, and UR satisfying

U †
L · M̃U · UR =

[

mu 0

0 mc

]

, (24)

or equivalently,

U †
L ·

(

M̃UM̃†
U

)

· UL =

[

m2
u 0

0 m2
c

]

, (25)

where

M̃UM̃†
U =

[

3
2
[mU

3 ]2 + [mU
13

]2 + mU
13

mU
3

√
2mU

3 mU
13

e−i π

4√
2mU

3 mU
13

ei π

4
3
2
[mU

3 ]2 + [mU
13

]2 − mU
13

mU
3

]

. (26)
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From eqs. (26) and (25) the eigenvalues are calculated:

m2
u,c =

(3[mU
3 ]2 + 2[mU

13
]2) ∓ 2

√
3mU

3 mU
13

2
. (27)

which indicates how the quark mass spectrum can be successfully accommodated. The

unitary matrix UL takes the form:

UL =
1√

1 + A2

[

1 e−i π

4 A

−ei π

4 A 1

]

, (28)

with A = (
√

3 + 1)/
√

2. We note that UL is independent of quark masses.

In the down-sector, since the mass matrix M̃D takes the same form as M̃U , a matrix

(M̃DM̃†
D) is diagonalized by using the same unitary matrix UL of eq. (28). Hence we reach

the result for this special case

VCKM =

[

U †
LDL 0

0 1

]

=

[

U †
LUL 0

0 1

]

= 1 . (29)

which is an acceptable first approximation to the CKM matrix.

For the neutrinos, as in earlier work on T [8], the masses are not uniquely predicted

but the tribimaximal mixing angles [10] are. All these three neutrino mixing angles are

consistent with existing measurements.

The Higgs VEVs with a commonality between quarks and leptons are in the H3 of

T
′ ≡ SL2(F3) which has a simple decomposition under the quarternionic subgroup Q

which is likely to play a key role in the goal of linking lepton masses with quark masses.

In summary, while T ≡ A4 is one candidate for a lepton flavor group which naturally

gives rise to tribimaximal mixing, it is not unique among the non abelian finite groups in

this regard. The choice T
′ ≡ SL2(F3), also known as the binary tetrahedral group [20], sat-

isfies the requirement equally well, and because it has doublet representations can thereby

begin to accommodate the quark mass spectrum, particularly the anomalously heavy third

family.2 If our choice is the correct flavor symmetry, it remains to understand why Nature

chooses the triplet representations for leptons and the doublet representations for quarks.

Quantitative results for masses will require a relationship between the Yukawa parameters

from our proposed symmetry.

2Our SL2(F3) model appears to us as a promising framework worthy of further study with the goal

to obtain quantitative results for fermion masses. When we first discussed SL2(F3) as a family symmetry

in 1994 in [14], the state of neutrino physics at that time was insufficient to extend the model to the

lepton sector. Subsequent data has now made this a realistic objective. Recent theoretical work [21] was

a first step in this direction. A similar model has recently appeared [22] where tribimaximal neutrino

mixing is included in an SL2(F3) × Z3 family symmetry model with somewhat different assignments of

quarks to SL2(F3) irreps, and different vacuum allignment. This model is also supersymmetric, so contains

considerably more states and parameters. A grand unified theory based on T
′

is in [23].
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